

DPP – 4 (Current Electric

Video Solution on Website :https://physicsaholics.com/home/courseDetails/98 https://youtu.be/VQ1Y7ZGz3W4

Video Solution on YouTube:-

Written Solution on Website:https://physicsaholics.com/note/notesDetalis/53

> The terminal network shown in the figure consists of 6 resistors. The points A, C and E all are Q1. at potential 20 V while points B, D and F are at potential -10 volt then potential of junction O will be

> > (c)15 V

(d) -5V

(a) Zero (b) 10 V

Find the equivalent resistance between points A and B : Q 2.

	RA	612 517 61		
(a) 2Ω	$(b)\frac{2}{3}\Omega$		$\frac{3}{2}\Omega$	(d) $\frac{1}{2}\Omega$

Q 3. In the circuit shown, the galvanometer shows zero current. The value of resistance R is :

	\square		
(a) 1 Ω	(b) 2 Ω	(c) 4 Ω	 (d) 9 Ω

Q4. Two current elements P and Q have current voltage characteristics as shown below; Which of the graphs given below represents current voltage characteristics when P and Q are in series

Q 7. A battery of emf E and internal resistance r is connected across a resistance R. Resistance R can be adjusted to any value greater than or equal to zero. A graph is plotted between the current (i) passing through the resistance and potential difference (V) across it. Select the correct alternative(s) –

- (a) internal resistance of battery is 50hm
- (b) emf of the battery is 20V
- (c) maximum current which can be taken from the battery is 4A
- (d) V-i graph can never be a straight line as shown in figure
- Q 8. Consider an infinite ladder network. A voltage is applied between points A & B. If the voltage is halved after each section. Find the ratio R_1/R_2 .

 $Q \ 11$. There are two concentric spheres of radius *a* and *b* respectively. If the space between them is filled with medium of resistivity ρ , then the resistance of the inter gap between the two spheres will be

(a)
$$\frac{\rho}{4\pi(b+a)}$$

(b) $\frac{\rho}{4\pi}\left(\frac{1}{b}+\frac{1}{a}\right)$
(c) $\frac{\rho}{4\pi}\left(\frac{1}{a^2}-\frac{1}{b^2}\right)$
(d) $\frac{\rho}{4\pi}\left(\frac{1}{a}-\frac{1}{b}\right)$

 $Q\ 12.$ The equivalent resistance between point A and B is -

- (a) 4 r
- (b) 2r
- (c) r
- (d) r/4
- $Q\,13.$ $\,$ The equivalent resistance between A and B in the given circuit $\,$

Q 14. A 10 V car battery with negligible internal resistance is connected to a series combination of a 4Ω resistor that obey's Ohm's law and a thermistor that does not obey Ohm's law, but instead has a current –voltage relation $V = \alpha I + \beta I^2$ with $\alpha = 2\Omega$ and $\beta = 4\Omega/A$. The current through the 4Ω resistor is
(a) 1 A
(b) 2 A
(c) 2/5 A
(d) 5 A

៤

۲.n

8-118V

65

65

30

Q 15 Find current in wire AB ?

- (a) 1A (b) 2A
- (c) 3A
- (d) 4A

PRATIENT JAMA PRATIENT JAMA SIGSAMOLICS ANSWER Key

Q.1 b	Q.2 b	Q.3 a	Q.4 c	Q.5 a
Q.6 b	Q.7 a	Q.8 a	Q.9 b	Q.10 d
Q.11 d	Q.12 d	Q.13 b	Q.14 a	Q.15 a

× ×	PLUS India's Be Interactiv Structure Live Tests Personal Study Pla	ICONIC ** est Educators ve Live Class d Courses & s & Quizzes Coach inner	s es PDFs	
24 months No cost EMI		₹2,3	333/mo ₹56,000	>
18 months No cost EMI		₹2,6	525/mo ₹47,250	>
12 months No cost EMI		₹3,2	2 08/mo ₹38,500	>
6 months No cost EMI		₹4,6	667/mo ₹28,000	>
To be paid as a one-time payment View all plans				
Add a re	ferral cod	e		APPLY

PHYSICSLIVE

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

	PLUS	ICONIC **		
× × ×	India's Be Interactiv Structure Live Tests Personal Study Pla	est Educators ve Live Classes d Courses & PDFs s & Quizzes Coach		
140				
24 months No cost EMI		₹2,100/m +10% OFF ₹50,40	° >	
18 months No cost EMI		₹2,363/m + 10% OFF ₹42,52	° >	
12 months No cost EMI		₹2,888/m +10% OFF ₹34,65	° >	
6 months No cost EMI		₹4,200/m 4 +10% OFF ₹25,20	° >	
To be paid as a one-time payment				
Awesome! PHYSICSLIVE code applied X				

Written Solution

DPP- 4 Current : K.V.L.,Series and Parallel Combination By Physicsaholics Team

Q.1) The terminal network shown in the figure consists of 6 resistors. The points A, C and E all are at potential 20 V while points B, D and F are at potential -10 volt then potential of junction O will be

101

87

(d) -5V

 $=\frac{30}{8} = \frac{30}{20} = \frac{30}{20} = \frac{100}{100}$

200

21

(c)15 V

-10V

-101

-10V

в

ZOV

(a) Zero

Q.3) In the circuit shown, the galvanometer shows zero current. The value of resistance R is : 12^{12}

Q.4) Two current elements P and Q have current voltage characteristics as shown below; Which of the graphs given below represents current voltage characteristics when P and Q are in series

Q.5) In the network shown in the figure below, calculate the potential difference between A and B ? ($V_B - V_A$) =

Q.7) A battery of emf E and internal resistance r is connected across a resistance R. Resistance R can be adjusted to any value greater than or equal to zero. A graph is plotted between the current (i) passing through the resistance and potential difference (V) across it. Select the correct alternative(s) -

(volt)

(a) internal resistance of battery is 50hm (b) emf of the battery is 20V (c) maximum current which can be taken from the battery is 4A $\xi = 10V$ (d) V-i graph can never be a straight line as shown in figure $-\chi = -\frac{14}{3}$ Q.8) Consider an infinite ladder network. A voltage is applied between points A & B. If the voltage is halved after each section. Find the ratio R_1/R_2 .

Q.10) In the circuit shown in figure, the current through –

1 r

3Ω ₩₩

 \sim

 2Ω

 8Ω

D

= IA

 8Ω

 $\overline{\mathbf{C}}$

 $\frac{2\Omega}{2\Omega}$

 2Ω

 \mathcal{W}

 2Ω

 4Ω

(a) the 30hm resistor is 0.50 A
(b) the 30hm resistor is 0.25 A
(c) the 40hm resistor is 0.50 A
(d) the 40hm resistor is 0.25 A

Q.11) There are two concentric spheres of radius a and b respectively. If the space between them is filled with medium of resistivity p, then the resistance of the inter gap between the two spheres will be

Resistance of differential shell	
$dR = \rho \frac{dn}{dN}$	Ax Ax
all such Shells are in series	ka J
(a) $\frac{\rho}{4\pi(h+a)}$ (b) $\frac{\rho}{4\pi}(\frac{1}{h}+\frac{1}{a})$	- vi
(c) $\frac{\rho}{\rho} \left(\frac{1}{1} - \frac{1}{1}\right)$ (c) $\frac{\rho}{\rho} \left(\frac{1}{1} - \frac{1}{1}\right)$	
$4\pi (a^2 b^2) R = dR \qquad 4\pi (a b)$	
$= \frac{1}{4\pi} \int_{\alpha} \frac{dx}{x^2} = \frac{1}{4\pi} \left(\frac{1}{\alpha} - \frac{1}{6} \right)$	

Q.13) The equivalent resistance between A and B in the given circuit

 V_{2} R V_{3} R R R А В R/2 (a) R (A)R/2 B (c) R/3 (\mathbf{d}) R

Q.14) A 10 V car battery with negligible internal resistance is connected to a series combination of a 4 Ω resistor that obey's Ohm's law and a thermistor that does not obey Ohm's law, but instead has a current –voltage relation $V = \alpha I + \beta I^2$ with $\alpha = 2\Omega$ and $\beta = 4\Omega/A$. The current through the 4 Ω resistor is

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/98

Video Solution on YouTube:-

https://youtu.be/VQ1Y7ZGz3W4

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/53

@Physicsaholics_prateek

@<u>NEET_Physics</u> @<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

